Towards an integration of deep learning and neuroscience

A preliminary attempt at an integrative “survey” of where we stand

Adam H. Marblestone
MIT Media Lab
Cambridge, MA 02139, USA

Greg Wayne
Google Deepmind
London, EC4A 3TW, UK

Konrad P. Kording
Rehabilitation Institute of Chicago
Northwestern University
Chicago, IL 60611, USA

Adam Marblestone
Blue Brain Project
Machine Learning Meets Biology Workshop
2017
Machine learning and neuroscience speak different languages today…

ML
- Gradient-based optimization
- Supervised learning
- Augmenting neural nets with external memories

Neuro
- Circuits
- Representations
- Computational motifs
- “the neural code”

Key messages (still very much hypotheses):
- These are not as far apart as we think
- Modern ML, suitably modified, may provide a partial framework for theoretical neuro
“Atoms of computation” framework (outdated)

<table>
<thead>
<tr>
<th>Computation</th>
<th>Algorithmic/representational realization</th>
<th>Neural implementation(s)</th>
<th>Brain location(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid perceptual classification</td>
<td>Receptive fields, pooling and local contrast normalization</td>
<td>Hierarchies of simple and complex cells</td>
<td>Visual system</td>
</tr>
<tr>
<td>Complex spatiotemporal pattern recognition</td>
<td>Bayesian belief propagation</td>
<td>Feedforward and feedback pathways in cortical hierarchy</td>
<td>Sensory hierarchies</td>
</tr>
<tr>
<td>Learning efficient coding of inputs</td>
<td>Sparse coding</td>
<td>Thresholding and local competition</td>
<td>Sensory and other systems</td>
</tr>
<tr>
<td>Working memory</td>
<td>Continuous or discrete attractor states in networks</td>
<td>Persistent activity in recurrent networks</td>
<td>Prefrontal cortex</td>
</tr>
<tr>
<td>Decision making</td>
<td>Temporal-difference reinforcement learning algorithms; actor-critic models</td>
<td>Cortically implemented Bayesian inference networks combined with temporal difference reinforcement learning via the dopamine system and action selection systems in the basal ganglia</td>
<td>Prefrontal cortex</td>
</tr>
<tr>
<td>Gating of information flow</td>
<td>Context-dependent tuning of activity in recurrent network dynamics</td>
<td>Recurrent neural networks implementing line attractors and selection vectors</td>
<td>Prefrontal cortex</td>
</tr>
<tr>
<td>Gain control</td>
<td>Divisive normalization</td>
<td>Shunting inhibition in networks or balanced background synaptic excitation and inhibition</td>
<td>Common across many cortical areas</td>
</tr>
<tr>
<td>Sequencing of events over time</td>
<td>Feed-forward cascades; serial working memories</td>
<td>Synfire chains; Thalamp-cortico-striatal loops</td>
<td>Common across many cortical areas</td>
</tr>
<tr>
<td>Representation and transformation of variables</td>
<td>Population coding</td>
<td>Time-varying firing rates of cosine-tuned neurons representing dot products with encoding vectors</td>
<td>Motor cortex</td>
</tr>
<tr>
<td>Variable binding</td>
<td>Holographic reduced representations</td>
<td>Circular convolution of vectors represented by neural population codes</td>
<td>Cortical areas involved in sequential or symbolic processing</td>
</tr>
<tr>
<td>Dynamic binding</td>
<td>Neural synchronization</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Objection to a “list of neural computations”

“The big, big lesson from neural networks is that there exist computational systems (artificial neural networks) for which function only weakly relates to structure...

A neural network needs a cost function and an optimization procedure to be fully described; and an optimized neural network's computation is more predictable from this cost function than from the dynamics or connectivity of the neurons themselves.”

Greg Wayne (DeepMind) in response to Atoms of Neural Computation paper
Three hypotheses for linking neuroscience and ML

1) **Existence of cost functions:**
the brain optimizes cost functions (~ as powerfully as backprop)

2) **Diversity of cost functions:**
the cost functions are diverse, area-specific and systematically regulated in space and time (not a single “end-to-end” training procedure)

3) **Embedding within a structured architecture:**
optimization occurs within a specialized architecture containing pre-structured systems (e.g., memory systems, routing systems) that support efficient optimization
Three hypotheses for linking neuroscience and ML

1) **Existence of cost functions:**
the brain optimizes cost functions (~ as powerfully as backprop)

Not just the trivial “neural dynamics can be described in terms of cost function(s)”… it actually has machinery to do optimization

2) **Diversity of cost functions:**
the cost functions are diverse, area-specific and systematically regulated in space and time
(not a single “end-to-end” training procedure)

3) **Embedding within a structured architecture:**
optimization occurs within a specialized architecture containing pre-structured systems (e.g., memory systems, routing systems) that support efficient optimization
Three hypotheses for linking neuroscience and ML

1) Existence of cost functions: the brain optimizes cost functions (~ as powerfully as backprop)
1) Existence of cost functions:

Ways to perform optimization in a neural network

- **Back-propagation**
 - efficient, exact gradient computation by propagating errors through multiple layers

- **Node perturbation**
 - Serial
 - Parallel
 - slow, high-variance gradient computation

- **Weight perturbation**
 - Serial
 - Parallel
 - slow, high-variance gradient computation
Back-propagation is much more efficient and precise, but computational neuroscience has mostly rejected it.

It has instead focused on local synaptic plasticity rules, or occasionally on weight or node perturbation.

Example:

Gradient learning in spiking neural networks by dynamic perturbation of conductances

Ila R. Fiete¹ and H. Sebastian Seung²

¹Kavli Institute for Theoretical Physics,
University of California, Santa Barbara, CA 93106
²Howard Hughes Medical Institute and Department of Brain and Cognitive Sciences,
M.I.T., Cambridge, MA 02139

We present a method of estimating the gradient of an objective function with respect to the synaptic weights of a spiking neural network. The method works by measuring the fluctuations in the objective function in response to dynamic perturbation of the membrane conductances of the neurons. It is compatible with recurrent networks of conductance-based model neurons with dynamic synapses. The method can be interpreted as a biologically plausible synaptic learning rule, if the dynamic perturbations are generated by a special class of “empiric” synapses driven by random spike trains from an external source.
1) Existence of cost functions:

Neural nets and the brain

It is hardly surprising that such achievements have produced a heady sense of euphoria. But is this what the brain actually does? Alas, the back-drop nets are unrealistic in almost every respect, as indeed some of their inventors have admitted. They usually violate the rule that the outputs of a single neuron, at least in the neocortex, are either excitatory synapses or inhibitory ones, but not both12. It is also extremely difficult to see how neurons would implement the back-prop algorithm. Taken at its face value this seems to require the rapid transmission of information backwards along the axon, that is, antidromically from each of its synapses. It seems highly unlikely that this actually happens in the brain. Attempts to make more realistic nets to do this13, though ingenious, seem to me to be very forced. Moreover the theorists working...
I) Existence of cost functions:

Do you really need information to flow “backwards along the axon”?

Or more generally, is the “weight transport” problem a genuine one?
1) Existence of cost functions:

Random feedback weights support learning in deep neural networks

Timothy P. Lillicrap, Daniel Cownden, Douglas B. Tweed, Colin J. Akerman

(Submitted on 2 Nov 2014)
1) Existence of cost functions:

Normal back-prop

$$\Delta h^0_{BP} = W^T_1 (W^T_2 e \circ h'_1), \text{ where } \circ \text{ is element-wise multiplication}$$

Fixed random feedback weights

$$\Delta h^0_{FA} = B_1 (B_2 e \circ h'_1), \text{ where } B_1 \text{ and } B_2 \text{ are random matrices}$$

Random feedback weights support learning in deep neural networks

Timothy P. Lillicrap, Daniel Cownden, Douglas B. Tweed, Colin J. Akerman

(Submitted on 2 Nov 2014)
I) Existence of cost functions:

Use multiple dendritic compartments to store both “activations” and “errors”

- Soma voltage \sim activation
- Dendritic voltage \sim error derivative
1) Existence of cost functions:

Or use temporal properties of the neuron to encode both signals

firing rate \sim activation
d(firing rate)/dt \sim error derivative

See also similar claims by Hinton
1) Existence of cost functions:

Removing the two-phase and globally-coordinated aspects of back-prop

Figure 1: (a) General communication protocol between A and B. After receiving the message h_A from A, B can use its model of A, M_B, to send back synthetic gradients $\hat{\delta}_A$ which are trained to approximate real error gradients δ_A. Note that A does not need to wait for any extra computation after itself to get the correct error gradients, hence decoupling the backward computation. The feedback model M_B can also be conditioned on any privileged information or context, c, available during training such as a label. (b-d) DNI applied to feed-forward networks. (b) A section of a vanilla feed-forward neural network \mathcal{F}_i^N. (c) Incorporating one synthetic gradient model for the output of layer i. This results in two sub-networks \mathcal{F}_i^i and \mathcal{F}_{i+1}^i which can be updated independently. (d) Incorporating multiple synthetic gradient models after every layer results in N independently updated layers.

Decoupled Neural Interfaces using Synthetic Gradients

Max Jaderberg Wojciech Marian Czarnecki Simon Osindero
Oriol Vinyals Alex Graves Koray Kavukcuoglu
Existence of cost functions:

But isn’t gradient descent only compatible with “supervised” learning?

No! Lots of unsupervised learning paradigms operate via gradient descent...

classic auto-encoder
1) **Existence of cost functions:**

But isn’t gradient descent only compatible with “supervised” learning? No! Lots of unsupervised learning paradigms operate via gradient descent…

Figure 2: Context Encoder. The context image is passed through the encoder to obtain features which are connected to the decoder using channel-wise fully-connected layer as described in Section 3.1. The decoder then produces the missing regions in the image.
1) **Existence of cost functions:**

But isn’t gradient descent only compatible with “supervised” learning?

No! Lots of unsupervised learning paradigms operate via gradient descent…

prediction of the next frame of a movie

![Diagram](image)

Figure 1: The gated model. Each frame encoder produces a representation from its input. The gating head examines both these representations, then picks one component from the encoding of time t to pass through the gate. All other components of the hidden representation are from the encoding of time $t-1$. As a result, each frame encoder predicts what it can about the next frame and encodes the “unpredictable” parts of the frame into one component.
Existence of cost functions:

But isn’t gradient descent only compatible with “supervised” learning?

No! Lots of unsupervised learning paradigms operate via gradient descent…

prediction of the next frame of a movie

Figure 3: Example predictions for the rotating faces dataset. Predictions for models trained with MSE and a weighted MSE and adversarial loss (AL) are shown.
1) **Existence of cost functions:**

But isn’t gradient descent only compatible with “supervised” learning?

No! Lots of unsupervised learning paradigms operate via gradient descent…

generative adversarial network

![Diagram of a generative adversarial network (GAN)](image-url)
I) Existence of cost functions:

Signatures of error signals being computed in the visual hierarchy?!

Evidence that the ventral stream codes the errors used in hierarchical inference and learning

Elias B. Issa, Charles F. Cadieu, James J. DiCarlo

Does not yet tell us whether it is something like backprop, or whether these signals are used for learning vs. inference...
The brain could efficiently compute approximate gradients of its multi-layer weight matrix via propagating credit through multiple layers of neurons.

Diverse potential mechanisms available leveraging:
- Dendritic computation
- Timing-dependent plasticity
...

Such a core capability for error-driven learning could underpin diverse supervised and unsupervised learning paradigms.

I) Existence of cost functions:

Take Away
The brain could efficiently compute approximate gradients of its multi-layer weight matrix via propagating credit through multiple layers of neurons.

Diverse potential mechanisms available leveraging:
- Dendritic computation
- Timing-dependent plasticity
...

Such a core capability for error-driven learning could underpin diverse supervised and unsupervised learning paradigms.
Three hypotheses for linking neuroscience and ML

2) **Biological fine-structure of cost functions:** the cost functions are diverse, area-specific and systematically regulated in space and time
Global “value functions” vs. multiple local internal cost functions

These diagrams describe a global “value function” for “end-to-end” training of the entire brain… but these aren’t the whole story!

Randal O’Reilly
Internally-generated **bootstrap cost functions**: against “end to end” training

Simple optical flow calculation provides an *internally generated “bootstrap” training signal* for hand recognition

Optical flow: bootstraps hand recognition
Hands + faces: bootstraps gaze direction recognition
Gaze direction (and more): bootstraps more complex social cognition

From simple innate biases to complex visual concepts

Shimon Ullman\(^1,2\), Daniel Harari\(^1\), and Nimrod Dorfman\(^1\)
Internally-generated **bootstrap cost functions** against “end to end” training

Generalizations of this idea could be a key architectural principle for how the biological brain would generate and use **internal** training signals (a form of “weak label”)

From simple innate biases to complex visual concepts

Shimon Ullman\(^1,^2\), Daniel Harari\(^1\), and Nimrod Dorfman\(^1\)
But how are internal cost functions represented and delivered?

Normal backprop: need a full vectorial target pattern to train towards
Reinforcement: problems of credit assignment are even worse

Possibility: The brain may re-purpose deep reinforcement learning to optimize diverse internal cost functions, which are computed internally and delivered as scalars.
Ways of making deep RL efficient

Figure 4: Generalization of AGREL to networks with more than three layers. (A) Feedforward connections u, v, and w propagate activity from the input layer I through two hidden layers to the output layer Z. The winning output unit, s, feeds back to units in layer Y through connections w'_{sj}. All units in Y that receive feedback from Z propagate it to layer X through feedback connections v'_{ji}. (B) Units of AGREL are hypothesized to correspond to cortical columns that contain FF neurons (light gray circles) that propagate activity to the next higher layer as well as FB neurons (dark gray) that propagate activity to the previous layer. FB neurons gate plasticity in the FF pathway, but they do not directly influence the activity of FF neurons (connection with square).

Attention-gated reinforcement learning of internal representations for classification.

Roelfsema PR, van Oyen A.
Ways of making deep RL efficient

Algorithm 1 Deep Q-learning with Experience Replay

1. Initialize replay memory \mathcal{D} to capacity N
2. Initialize action-value function Q with random weights

for episode = 1, M do

3. Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$

for $t = 1, T$ do

4. With probability ϵ select a random action a_t
5. otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$

6. Execute action a_t in emulator and observe reward r_t and image x_{t+1}
7. Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$
8. Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D}
9. Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D}
10. Set

 $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$

11. Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3

end for

end for

“biologically plausible”?

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller
A complex molecular and cellular basis for reinforcement-based training in primary visual cortex

Reinforcement in striatum: VTA dopaminergic projections
Reinforcement in cortex: basal forebrain cholinergic projections

with a glial intermediate!

A Cholinergic Mechanism for Reward Timing within Primary Visual Cortex

^3 These authors contributed equally to this work

Nucleus basalis-enabled stimulus-specific plasticity in the visual cortex is mediated by astrocytes (i.e., glia not neurons)

Naiyan Chen^a,1, Hiroki Sugihara^a,1, Jitendra Sharma^a,b, Gertrudis Perea^a, Jeremy Petravicz^a, Chuong Le^a,
and Mriganka Sur^a,2
Where are the cost functions:
Cholinergic transmission to cortex from basal forebrain?

Reinforcement in striatum: VTA dopaminergic projections
Reinforcement in cortex: basal forebrain cholinergic projections
Where are the cost functions:
A diversity of reinforcement-like signals?

Classic work by Eve Marder in the crab stomatogastric ganglion
Where are the cost functions:
Motor intention efference copies via thalamus?

Fig. 11.
Schema to show the sequence of development of the connections illustrated in Fig. 3. A–D show a chronological sequence, with black lines indicating mature and grey lines indicating immature pathways.

Sherman and Guillery:
“Anatomical pathways that link perception and action”
Where are the cost functions: Storage of temporal context in thalamus for predictive learning?

Figure 1: The temporal evolution of information flow in a LeabraTI model predicting visual sequences, over a period of three alpha cycles of 100 msec each. The Deep context maintains the prior 100 msec information while the Superficial generates a prediction (in the minus phase) about what will happen next. Learning occurs in comparing this prediction with the plus phase outcome, which generates an updated activity pattern in the Super layers. Thus, prediction error is a temporally extended quantity, not coded explicitly in individual neurons.
Where are the cost functions: Storage of temporal context in thalamus for predictive learning?

Figure 2: Anatomical connectivity supporting the LeabraTI model. Super (II/III) layers have extensive connectivity within and between areas, and do the primary information processing. Deep layer V integrates contextual information within and between areas, and Sb bursting neurons only update the sustained context, in layer VI, every 100 msec. These layer VI tonically firing neurons sustain the context through recurrent projections through the thalamic relay cells (TRC), which also communicate the context up to the Super neurons (via IV) to support generation of the next prediction.
2) **Biological fine-structure of cost functions:** the cost functions are diverse, area-specific and systematically regulated in space and time

Take Away

Not a single “end-to-end” cost function for the entire brain

A series of cost functions generated internally and deployed to particular brain areas at particular times in a genetically and developmentally regulated fashion

Bootstrapping of learning based on heuristics and weak labels ("prior knowledge" encoded into the training process)

Reinforcement system may be re-purposed for diverse internal cost functions, and coupled with multi-layer credit assignment in deep networks
Three hypotheses for linking neuroscience and ML

3) Embedding within a pre-structured architecture: the brain contains dedicated, specialized systems for efficiently solving key problems whose solutions are not easily bootstrapped by learning, such as information routing and variable binding.

[Diagram showing data flow and specialized subsystems like Sensory Inputs, Motor Outputs, Specialized subsystems (Pathfinder e.g., Hippocampus, Working memory slots e.g., PFC, Gated relays e.g., Thalamus, Multi-timescale predictive feedback e.g., Cerebellum, Reinforcement learning e.g., Basal Ganglia).]
Neuroscience broadly has found an array of specialized structures
Solari and Stoner cognitive model

Solari and Stoner 2011
Integrated “biological” cognitive architectures: LEABRA and SPAUN

Interesting but do not show “powerful” AI performance

The Leabra Cognitive Architecture: How to Play 20 Principles with Nature and Win!
Randall C. O’Reilly, Thomas E. Hazy, and Seth A. Herd
Department of Psychology and Neuroscience
University of Colorado Boulder
345 UCB
Boulder, CO 80309
randy.oreilly@colorado.edu

A Large-Scale Model of the Functioning Brain
Chris Eliasmith et al.
Science 338, 1202 (2012);
DOI: 10.1126/science.1225266
Compare: Emerging structured machine learning architectures

Graves, Wayne, Danihelka (2014)
Compare: Emerging structured machine learning architectures

Memory system is already somewhat hippocampus-inspired...

Hybrid computing using a neural network with dynamic external memory

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, Adrià Puigdomènech Badia, Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain, Helen King, Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu & Demis Hassabis
Compare: Emerging structured machine learning architectures

(c) RNN Controlling a Stack

Figure 1: Illustrating a Neural Stack’s Operations, Recurrent Structure, and Control
Pre-structured architectures in the brain: to make learning efficient?

Thalamic gating of “copy and paste” operations between cortical working memory buffers, executing a sequence of steps controlled by the basal ganglia.
Pre-structured architectures in the brain: to make learning efficient?

The neural optimal control hierarchy for motor control

T DeWolf and C Eliasmith
Cost
Function
Cortical
Area
Pathfinder
e.g., Hippocampus
Working memory slots
e.g., PFC
Gated relays
e.g., Thalamus
Multi-timescale predictive feedback
e.g., Cerebellum
Reinforcement learning
e.g., Basal Ganglia

Data

Training

Sensory Inputs

Motor Outputs

Specialized subsystems

Cost
Function
Cortical
Area

Cost
Function
Cortical
Area

Cost
Function
Cortical
Area

Cost
Function
Cortical
Area

Specialized subsystems

Cost
Function
Cortical
Area

Cost
Function
Cortical
Area

Cost
Function
Cortical
Area

Cost
Function
Cortical
Area
Differences with today’s deep learning

Information represented via assemblies/attractors

Autoassociative dynamics in the generation of sequences of hippocampal place cells

Brad E. Pfeiffer* and David J. Foster†

Neuronal circuits produce self-sustaining sequences of activity patterns, but the precise mechanisms remain unknown. Here we provide evidence for autoassociative dynamics in sequence generation. During sharp-wave ripple (SWR) events, hippocampal neurons express sequenced reactivations, which we show are composed of discrete attractors. Each attractor corresponds to a single location, the representation of which sharpens over the course of several milliseconds, as the reactivation focuses at that location. Subsequently, the reactivation transitions rapidly to a spatially discontiguous location. This alternation between sharpening and transition occurs repeatedly within individual SWRs and is locked to the slow-gamma (25 to 50 hertz) rhythm. These findings support theoretical notions of neural network function and reveal a fundamental discretization in the retrieval of memory in the hippocampus, together with a function for gamma oscillations in the control of attractor dynamics.

See also: “Imprinting and recalling cortical ensembles” by Yuste lab
Differences with today’s deep learning

The attractors may be in cortico-thalamo-cortical loops

Cognitive consilience: primate non-primary neuroanatomical circuits underlying cognition

Soren Van Hout Solari and Rich Stoner
Differences with today’s deep learning

The attractors may be in cortico-thalamo-cortical loops

![Diagram of cortico-thalamo-cortical loops]

MDN = mediodorsal nucleus of thalamus

Basal ganglia gated cortico-thalamo-cortical loops in working memory...
Differences with today’s deep learning

The attractors may be in cortico-thalamo-cortical loops

Maintenance of persistent activity in a frontal thalamocortical loop

Zengcai V. Guo, Hidehiko K. Inagaki, Kayvon Daie, Shaul Druckmann, Charles R. Gerfen & Karel Svoboda

Basal ganglia gated cortico-thalamo-cortical loops in working memory...
Differences with today’s deep learning

Auto-associative and hetero-associative memories

Recall of memory sequences by interaction of the dentate and CA3: A revised model of the phase precession
Differences with today’s deep learning

Coordinating communication via oscillations?

Thalamus sets up synchronous oscillations in donor and recipient cortical areas, and this synchrony gates direct cortico-cortical information transfer between them.

(adapted from [6]). Information is transmitted via the cortico-cortical connections to the next cortical region or regions, while the HO thalamic nuclei selectively activate the appropriate downstream cortical area that will be engaged in the next level of processing. Building from Thalamic pathways underlying prefrontal cortex–medial temporal lobe oscillatory interactions

Nicholas A. Ketz, Ole Jensen, Randall C. O’Reilly
DOI: http://dx.doi.org/10.1016/j.tins.2014.09.007 | CrossMark
Differences with today’s deep learning

Coordinating communication via oscillations?

Thalamic amplification of cortical connectivity sustains attentional control

L. Ian Schmitt, Ralf D. Wimmer, Miho Nakajima, Michael Happ, Sima Mofakham & Michael M. Halassa
Differences with today’s deep learning

Coordinating learning via oscillations?

Theta Coordinated Error-Driven Learning in the Hippocampus

Nicholas Ketz, Srinimisha G. Morkonda, Randall C. O'Reilly
TAKE HOME MESSAGES

We have no idea if the brain “does backprop”, but also no reason to think it cannot

The end of the “representations + transformations” program?
 Neural representations are complex
 You can find any almost any “tuning”
 (e.g., see recent Giacomo/Ganguli grid cell results)
 Neural computations are diverse

What if “understanding” should mean identifying:
 Architecture
 Cost Functions (as a function of area and time)
 Means of optimization

 …rather than directly modeling how representations
 are transformed, i.e.,
 rather than listing “atoms of computation”

But: need to understand the significance of key elements like
 Attractors, Oscillations, Dendritic Computation, Diversity of Neurons/Synapses
 and the nature of the the specialized memory systems and control structures

Look to mesoscale anatomy for clues to architecture?
You can find almost any “tuning”

A Multiplexed, Heterogeneous, and Adaptive Code for Navigation in Medial Entorhinal Cortex

Kiah Hardcastle, Nisr Maheswaranathan, Surya Ganguli, Lisa M. Giocomo
Thank You